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EXECUTIVE SUMMARY

Although Illinois has the largest reserves of high-volatile,

bituminous coal in the United States, most of it is high in sulfur. The

major constraint on its use is the high cost of technology for keeping

oxides of sulfur out of the atmosphere. Advances in the technology of

utilizing high-sulfur coal anticipated from research proposed in this

report should be of interest to government and industrial planners at all

levels who are concerned with the impact that restrictions on high-sulfur

coal are having on the economy of the state and the nation.

About 4 million tons per year of Illinois coal goes into coke making

for metallurgical applications. Only low-sulfur coal is suitable for coke

making in conventional coke ovens, and it must be blended with eastern

coals to make high quality coke. Char made from coal is an intermediate

in emerging technology for making formed coke in continuous, clean, pro-

cesses that utilize a wide range of coals. But demonstration of this new

technology on a commercial scale has been limited to low-sulfur Illinois

coal. Demonstration of an economically attractive way to use high-sulfur

Illinois coal as a feed stock could encourage the establishment of a formed

coke industry in Illinois to provide coke for domestic as well as foreign

markets. Coke sells at four times the price of coal, and it is this differ-

ence that provides an attractive economic incentive for industry. Further-

more, problems of national security and increasing balance of trade deficits

would be ameliorated if United States steel companies could decrease their

heavy dependency upon imported coke.

A new method of devolatilizing coal (U.S. patent application 296,860)

has been developed at the Illinois State Geological Survey (ISGS) ; the

sulfur in the char produced from this new method has been shown to be

susceptible to chemical attack and removal. This report describes the

techniques, procedures and equipment that will be required at the ISGS

Applied Research Laboratory to conduct the bench-scale tests that must

precede pilot-scale production of formed coke from low-sulfur char pro-

duced from high-sulfur coal.
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INTRODUCTION

In order to determine if the quality of a semi-coke or char is

suitable for the manufacture of metallurgical formed coke, it is

necessary to consider those processes that use semi-coke or char and the

properties required for making formed coke. The properties required for

making formed coke depend on the conditions in each stage of the formed

coke process and on the blending components or binders used. The quality

of semi-coke or char depends principally on the coal from which it is

made and the heating cycle (heating rate, maximum temperature, and

cooling rate) to which the coal is subjected. The quality may subse-

quently be affected by additional physical or chemical treatments such

as those involved in the production of ISGS chars.

The ISGS chars produced by Kruse and Shimp (1) are formed in a 3-

stage sequence of charring, acid leaching, and hydrodesulfurization that

removes 80 percent to 90 percent of the sulfur from high-volatile

bituminous, high-sulfur, Illinois coals. Charring is carried out in a

continuous-feed charring oven in which beds of coal 2 to 18 mm thick are

placed on a conveyor of overlapping stainless steel trays, moving counter

to the direction of the removal of volatile components.

Because there are no standard techniques for the evaluation of semi-

coke or char, it is necessary to devise such methods by considering the

standard techniques for the evaluation of coal and conventional coke and

by examining the effects of sulfur removal by chemical means. Determina-

tion of the sulfur distribution is particularly important in chars made

from Illinois coals because of the difficulty of sulfur removal.

In this paper we will: (1) discuss the principal formed-coke

processes, Indicating which process is the most appropriate for use with

ISGS chars; (2) describe techniques for evaluating coal and coke; (3)

discuss methods of monitoring the sulfur distribution in coal, semi-coke,

and coke; (4) suggest techniques for evaluating semi-coke for the pro-

duction of metallurgical formed coke; and ( 5) list the equipment and

materials required for conducting such testing.
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PRODUCTION OF FORMED COKE

Formed coke is produced by the complete or partial carbonization of

coal briquets or pellets that have been mechanically shaped and heated

beyond the decomposition temperature of the coal ( 2) . At least 20

different processes have been developed to various stages (3), although

only a few of these processes have been fully developed for commercial

use. The advantages of producing formed coke rather than conventional

coke are: (1) the range of suitable coals is increased; ( 2) the quality

of coke produced by a continuous process is uniformly high; (3) the size

and shape of the coke can be controlled; and (4) better control of

pollution is possible.

The production of formed coke is based on one of three principal

methods. In the first method, thermal decomposition of the bituminous

substance is delayed until the transition into the plastic state has

occurred; then the hot plastic mass is formed into briquets that undergo

further thermal treatment. This method is exemplified by the Didier

Keihan Sumitomo (D.K.S.) process (4), which uses a blend of 0-20 percent

coking coal, 70-90 percent non-coking coal, and 10 percent binder.

The blend is heated to melt the binder and formed into briquets; the

briquets (either preheated or green) are carbonized and then quenched.

The second method is based on the low-temperature carbonization of

low-rank coal to obtain semi-coke and a bituminous substance as a binder.

The semi-coke and binder are then formed into briquets which are sub-

sequently heat-treated. For example, in the Food Machinery Company

(F.M.C.) process (5), coal (-3 mm) of any rank is pyrolysed in a fluid-

ized bed to produce a calcined char and pitch binder. The re-combined

components are formed into briquets at low temperatures and subsequently

calcined to yield formed coke. The characteristics of the char and binder

can be controlled, and supplementary binder may be added regardless of

the type of coal used. Although coal of any rank can be used, high-

volatile coals may reduce or eliminate the need for a supplementary binder,

The third method consists of hot briqueting the semi-coke obtained

from less coallfied coals (using coking coal as a binder) followed by



thermal treatment of the briquets. The Bergbau-Forschung Lurgi (B.F.L.)-

process (6) uses this principle, in that a hot fine-grained char and a

binder coal (up to 30 percent by weight) are mixed, hot briqueted, and

carbonized. The quantity ratios and the temperature of the char are

selected so as to obtain coking coal that exhibits optimum softening

behavior for briqueting and carbonization. If the binder coal is not a

good coking coal, a binder agent can be added.

The first two methods described produce formed coke of high strength

and a well-developed arrangement of pores, although the compact coke

substance has remained optically isotropic. The third method also can

produce formed coke of high strength with a good pore system containing

some anisotropic areas. However, it is still unclear as to whether the

participation of a more ordered phase showing optical anisotropy as in

the classical cokes is necessary in formed cokes to be used for metal-

lurgical purposes. If so, then it is necessary to develop this phase by

using the coking coals or other materials as a binder component. Never-

theless, Holgate and Pinchbeck (7) indicated that 100 percent F.M.C.

coke can replace conventional coke in the blast furnace. Testing of the

B.F.L. product indicated that this product compared favorably with the

F.M.C. product.

It seems likely that the F.M.C. process will be the first of these

formed coke processes to be used on a commercial basis for iron making in

the United States. This multistage process is used by F.M.C. to manufac-

ture coke briquets from high-volatile coals at Kemmerer, Wyoming. This

plant has a daily capacity of 250 tons of formed coke. F.M.C. formed

coke made from Elkol coal at Kemmerer has been tested in the Inland Steel

No. 5 blast furnace and its operation was found to be normal when up to

about 50 percent F.M.C. coke was used (8). A F.M.C. pilot plant at

Princeton, NJ , has been made available by the McKee Corporation for

testing coals. The Consol B.N.R. and the United States Steel (U.S.S.)

clean coke processes are other methods for producing formed coke, al-

though the U.S.S. process is really a combination of chemical conversion

and a coking process for producing char pellets by balling a blend of

heavy oil or tar and char. Coke pellets are small in size in comparison
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with formed coke briquets, and are not usually suitable for blast furnace

work because the permeability of the blast furnace stack is impaired by

the small size.

EVALUATION OF COAL

In order to identify coking coals and those which can be used in

formed coke processes it is necessary to evaluate or classify coals

according to established standard techniques.

Basic Analyses and Tests

Basic methods for the analysis and testing of coal are given in

American Society for Testing and Materials (A.S.T.M.) Part 26 (9) and

British Standards (B.S.) 1016 (10). Proximate analysis of coal involves

the determination of moisture, ash, volatile matter, and carbon content.

Ultimate analysis of coal is the determination of its elemental carbon,

hydrogen, nitrogen and sulfur content. Sulfur content—whether in

sulphate, pyritic, or organic form— is important because the sulfur may

remain in the coke made from the coal.

Tests on the coking and swelling properties of coal are fundamental

in the evaluation of coal. Information from these tests, in addition to

the proximate analysis data, is used to classify a coal sample, although

dilatometric data are usually required to define the coking propensity

of a coal. The coking and swelling tests determine the crucible swelling

number and the Gray-King coke type. In the crucible swelling test (i.e.,

the Free Swelling Index or F.S.I.) , the coal is shock heated to above

800 °C at a rate greater than 300°C per minute, whereas in the Gray-King

test the coal is raised in temperature from 300°C to 600°C at 5°C per

minute. The tests measure different phenomena, but both involve— to a

greater or lesser extent— the phenomena of particle adherence (caking)

,

softening, pyrolitic swelling, and shrinkage, each of which can be con-

sidered as a fundamental property of coal itself that affects the forma-

tion of a satisfactory coke.

Washability Testing

A high-ash content effectively dilutes the coal; therefore, if coke

mi-coke Ls made from high-ash coal, flux additions are needed to
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remove impurities from iron in the blast furnace, thus increasing the

volume of slag produced. Coal cleaning involves the separation of the

combustible organic minerals from the incombustible inorganic impurities.

This separation is achieved by exploiting differences in physical

properties (11), specific gravity, for instance. The incombustible in-

organic impurities that remain as ash on combustion of the raw coal

can be considered as intrinsic and extraneous.

Intrinsic impurities are thought to consist of the inorganic

content of the original plant structure, clayey materials that inter-

mingled or were absorbed while the vegetation was undergoing decompo-

sition, and salts that were dissolved in swamp water. Extraneous

impurities are considered to be: (1) bands of shale introduced into

the coal seam during its formation when layers of mud or silt were

deposited between layers of vegetable matter; (2) pyrites, calcite,

ankerite, and gypsum that have entered fractures during or after the

conversion of vegetable matter into coal; and (3) other foreign material,

principally shale and fine clay, from the roof and floor of the seam.

The washability of coal has been defined as the amenability of the

coal to gravity concentration (12); washability testing consists of

sizing the coal, sorting each sized product into a specific gravity

fraction, and analyzing the fraction for ash.

Coal Dilatometry

The classification of hard coals according to the international

standard (13), and Marshall (14), includes a measure of the swelling of

coal in a dilatometer. The majority of laboratories in Europe have made

use of equipment based upon the design of the Ruhr dilatometer (15), a

variant of the Audibert Arnu dilatometer (16). A dilatometer can be used

for classification purposes as well as for evaluation of coking propensity,

Coking coals undergo a volume contraction and a subsequent expansion

during heating (these volume changes are referred to as the plastic stage),

after which the coal is further heated into the post-plastic stage.

Gibson (17) has indicated that the quality of coke depends principally on

the behavior of the coal from which it is made in the plastic and post-
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plastic stages. Behavior in the plastic zone has been evaluated by

various techniques (18), but most suffer to varying extents from the

effects of volatile matter emission. Depending on the true viscosity of

the plastic mass, the emissions cause formation of a foam and give a

distorted value for viscosity. Dilatometry has been used to interpret

accurately the phenomena of true plasticity and degasif ication. Ruhr

dilatometry results can take into account the temperature range during

which plastic behavior is observed and also the degree of plastic con-

traction and dilation, expressed in a single term known as the coking

capacity. The coking capacity, as used by Gibson (18), is represented

by a factor g, and is calculated from the dilation characteristics.

A comparison has been made of the temperature range during which

plastic behavior is observed by use of both the Giesler viscometer and

Ruhr dilatometer (18). In the latter, the softening and resolidification

temperatures decreased fairly regularly with increase in volatile matter

content of the coal; that is, the Ruhr dilatometer gave a clearer picture

of the swelling characteristics. Also, dilation was unrestricted in the

Ruhr dilatometer. The technique of Ruhr dilatometry, described in a

special report (19), involves heating a pencil prepared from powdered

coal at a constant rate in a steel retort positioned in a furnace block.

The change in level of a piston resting on the sample is observed contin-

uously, and a record produced that is characteristic of the swelling

properties of the coal. It has been found (17) that a coal or coal blend

that exhibits a G factor in the range 0.95 to 1.15 is capable of forming

metallurgical coke.

Post-plastic zone dilation characteristics have been considered by

Gregory (18), but since these characteristics are mainly related to

fissuring and cracking of the coke, it is the plastic zone that is of

greater significance in the formation of coke. Since semi-coke is formed

at a temperature near the end of the plastic zone (heating does not

proceed much into the post-plastic zone), dilation characteristics may

also be used to evaluate or characterize semi-cokes or chars.



Coal Petrography

Coal microscopy, the main field of coal petrography, developed much

later than did inorganic rock microscopy because of the difficulties in

the preparation of coal specimens (20) . The International Committee for

Coal Petrography (I.C.C.P.) standardized the analytical methods used in

coal petrography in 1955. The Stopes-Heerlen System, based on the exam-

ination of polished surfaces, has been established as the standard method.

In spite of the numerous organic entities that occur in coal and the

prolific terminology that has been associated with them, the use of petro-

graphic analysis for applied work is restricted to only a few basic

measurements, principally vitrinite reflectance and maceral analysis.

The measurement of vitrinite reflectance and maceral analysis, including

the definition of terms and methods of sample preparation, are described

in the I.S.O. publication (21).

Reflectance of vitrinite . The reflectance of vitrinite can be

determined by use of a specialized optical microscope with a stabilized

light source, light-intensity measuring equipment, and a display unit,

which after calibration indicates directly the reflectance value. The

reflectance of vitrinite is determined because it is the maceral group

that makes up the bulk of the coal and is known to be responsive in a

progressive manner to changes in coal rank. Much work has been reported

on this subject (22).

Maceral analysis . Maceral analysis, the assessment of the percentage

of macerals in a coal, has been used for the prediction of coking pro-

perties of single or blended coals. In all proposed methods, the maceral

analytical data and the most important rank data have been summed and

grouped into two categories of reactives and inert constituents as

described by Thompson and Benedict (23). All reactive constituents of

coals suitable for carbonization pass through the plastic state, whereas

inert constituents do not. The ratio of reactives to inerts is therefore

considered important in the evaluation of the coking propensity of a

coal or coal blend.

Methods have been established for the identification of clearly

inert or reactive coal constituents, but there is disagreement about the
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analysis of the semi-inert constituents— those entities which react only

in part during carbonization and which, therefore, must be divided into

both reactive and inert categories. Various methods and techniques have

been proposed (23,24,25,26).

Although the maceral content of a coal or coal blend is important,

it does not enable one to predict with precision the coking propensity

of coal, if used alone. Identification of macerals in coal is also a

problem requiring a trained coal petrographer. Also, it is still not

clear if some macerals may be considered reactive or inert.

EVALUATION OF CONVENTIONAL METALLURGICAL COKE

Chemical Analysis of Coke

Proximate and ultimate analyses . Proximate and ultimate analyses of

coke are important because they indicate the moisture, ash, volatile

matter and fixed carbon contents, and the elemental analysis respectively.

(The same analyses could be carried out on a semi-coke.) Moisture is

important because its removal constitutes an extra thermal load in the

furnace; moisture should normally be low and constant in value. The

sulfur content must be less than 1 percent, since the bulk of the sulfur

in iron-making (^90 percent of the total load) originates in the coke.

The ash content of coke, which should be less than 10 percent, is dependent

upon the ash content of coal. Ash consists mostly of silica and alumina

and must be fluxed in the furnace with lime before it enters the slag.

The volatile matter content of coke should not exceed 1 percent. The

carbon content, which largely determines the calorific value of the fuel,

should be greater than 85 percent. Proximate and ultimate analyses on

coke are not routine tests as data may be obtained from analysis of the

coals from which the coke is made.

Reactivity . Reactivity to carbon dioxide and oxygen are specialized,

non-routine tests, although the critical air blast ignitability test (10)

is required for combustion processes. Reactivity depends on how long and

at what temperature the coke was carbonized, on the pore structure of

coke, and on the presence of impurities that can exercise a catalytic

effect (27). For example, the reactivity of pure char is known to be low
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but is increased by small additions of iron or sodium oxide; this is

particularly the case within the blast furnace, where the alkali content

can be high. Weight loss is usually recorded at a fixed temperature in

an oxidizing gas atmosphere. The coke may be in a granulated form or in

integral lumps. Ideally, in the blast furnace, coke should be unreactive

to carbon monoxide and extremely combustible in air; in practice,

reactivity is secondary to the development of suitable strength.

Calorific value determinations are made when required by a standard

calorimetric technique (9,10), although calculated values may be obtained

when the coke analysis is known.

Physical Testing of Coke

Coke strength . Coke strength is usually measured on an industrial

scale by subjecting a sample of coke to standardized abuse then sizing

the resulting products. An assessment of the physical properties of

blast furnace coke, principally in drum tests, has been described by

Wilkinson (28). The existing methods for testing coke have been outlined

by Gregory et al. (29). The drum test is widely accepted as the best

means of coke testing, and the drop shatter test has declined in use

since it does not adequately reflect practical conditions. Most drum

tests involve the use of a horizontally-mounted drum, constructed to

standard dimensions, which may contain a number of flights parallel to

its horizontal axis. The drum revolves for a standard number of revolu-

tions in a fixed period of time. The test sample, which consists of a

standard mass of coke of a fixed lump size, is sized after rotation. The

most commonly used drum tests are summarized in table 1.

The Micum drum test standard indices, MAO and M10, are given by the

percentage of the residue remaining on the 40 mm sieve and passing through

the 10 mm sieve. Grainger (30) used values of MAO > 75 and M10 < 7 to

indicate coke of acceptable quality. The A.S.T.M. tumbler test is more

severe than the Micum test; the indices are the cumulative percentages

remaining on the 25 mm (1-inch stability factor) and 6 mm (^-inch

hardness factor) sieves. The Japanese drum test indices D15 and T>\1° (31)

represent the amount of +15 mm coke remaining after 30 and 150 revolutions
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Table 1. Characteristics of coke drum tests

Test

Coke Drum Test

wt size length dia. rpm t

kg mm m m min

Strength index

rev. breakage abrasion

Mi cum 50.0 >60 1.0 1.0 25 A 100 %>40 mm %<10 mm
(MAO) (M10)

h 25.0 >60 0.5 1.0 25 A 100 %>A0 mm %<10 mm
Micum (MAO) (M10)

IRSID 50.0 >20 1.0 1.0 25 20 500 %>20 mm %<10 mm
(120) (110)

ASTM 10.0 51-76 0.A6 0.91 2A 58.8 1A00 %>25 mm %>6 mm
(Stab. (Hardness)
fac.)

J1S1 10.0 750 1.5 1.5 15 2/10 30/150 %>15 mm

The coke used in the ASTM and J1S1 tests is sized on square aperture
sieves; the other tests use round aperture sieves.

respectively. A limitation of drum testing— with the exception of the

French (I.R.S.I.D.) and Japanese Iron and Steel Industry tests (J. I. S.I.)—

is that they are made on nonrepresentative samples of the coke used, and

cover a wide range of levels of intensity of breaking (32). For instance,

coke sampled at the blast furnace skip may have Micum indices different

from those of the same coke sampled at the coke areas, due to abuse caused

by transportation. Those tests that subject the coke to minimal breaking,

such as in the Micum and Dj 5 tests, are sensitive to the initial size

distribution and to the degree of pretreatment to which the coke is sub-

jected. The I.R.S.I.D. and A.S.T.M. tests of 500 and 1A00 revolutions

respectively are more vigorous, but they are also less sensitive to the

point of sampling and involve different mechanisms of abuse than those

encountered in practice. It is therefore difficult to use such tests to

compare coke quality at different plants and to correlate drum indices

of cokes with furnace operation. It is even doubtful if the daily

variations in coke quality, or coke-size distributions at the blast

furnace, can be predicted if testing is conducted at the coke ovens. At

best, the drum test gives an indication of the initial size distriubtion.
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Laboratory scale strength tests have been carried out by Ignasiak

and Berkowitz (33), who developed a method of preparing and physically

testing cokes made from different coal blends. They tested homogeneous,

fissure-free 70 mm diameter coke discs of about 70 g in weight and 20 mm

thick. They assessed the mechanical strength by quartering each disc, by

subjecting the pieces to a mini-drum test, and by direct compression of

the coke discs to failure.

Patrick and Stacey (2) have used diametrical compression tests to

evaluate coke strength. Cores 10 mm in diamter and 9 mm long were drilled

from coke pieces and compressed diametrically to fracture. Breakage

ultimately occurred along the line of the diameter as a result of tensile

stresses developing at right angles to the line of the applied load.

Jones (34) has also used this test (known also as the Brazilian test),

with coke cylinders formed in confined conditions. This eliminates

drilling core samples. The Brazilian test has been widely used in rock

mechanics and has been shown (35) to be both simple and convenient to

use for brittle materials.

High temperature testing . The properties of coke inside the blast

furnace change in the lower part of the blast furnace, partly because of

the high-temperature environment. Consequently, hot strength tests have

become increasingly important. Birge et al. (36) heated coke to a

temperature of 1,100°C and tested it in an A.S.T.M. drum. They concluded

that this procedure gave a good indication of probable coke behavior in

the blast furnace. Vega (37) heated coke in a silicon carbide tube in

which a tumbler test was performed. This test probably measured only

abrasion resistance, and it was found that the results obtained at room

temperature gave no indication of the high-temperature behavior of coke.

Murakami (38) used a simple hot reaction test and determined the

reactivity and after-reaction strength of 200-g coke specimens; a high

degree of correlation between these two indices was found (39) . The

after-reaction strength decreased with increase in percentage reactivity,

except for special cokes such as formed coke, and was related to the pore

characteristics such as size, porosity, and pore wall thickness. These

properties varied as a function of pretreatment of the coal, the
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carbonizing conditions, and the method of coke quenching, but appeared

to be most affected by the basic properties of the raw coal, such as

degree of coalification and fluidity.

Clendenin (40) has indicated that coke degrades more rapidly at high

temperature, but that coke with a poor low-temperature strength also

exhibits poor strength at high temperatures, and vice versa.

Porosity of coke . The apparent and real densities of coke are often

determined experimentally and used to calculate the percentage of

porosity. The form of the pores (open, closed, or elongated) is also

important, as is the nature of the pore walls (wall thickness, optical

anisotropy, and degree of cracking). However, the structure of semi-coke

does not change greatly on further heating to form coke.

EVALUATION OF SEMI-COKES AND CHARS

Both semi-coke and char are materials that can be considered to be

intermediate between coal and coke. Coal and coke can be classified within

the limitations previously discussed, but semi-coke and char must be

characterized according to the maxiumum temperature to which they are

heated. The term semi-coke suggests that it has been made from a coking

coal and would transform into coke on further carbonization, whereas a

char may be formed from a non-coking coal and would not be transformed

into coke on further heating.

If techniques used for the evaluation of coal and coke are used to

evaluate a semi-coke or char, the parameters obtained will be difficult

to correlate with either coal or coke. Therefore, data must be obtained

for "standard" or reference semi-cokes or chars (that is, for materials

known to be suitable for making formed coke). Similar data for the ISGS

chars can then be compared with standard data. For example, the F.M.C.

process requires a char to be mixed with a binder, which is obtained

using the volatile matter from high volatile coals. Consequently, ISGS

chars can be compared with F.M.C. char on the basis of physical and

chemical parameters.
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Comparison of Physical Parameters of Chars

Strength . The strength of a semi-coke or char can be measured only

if an aggregate mass of material of standard shape is crushed. Direct

tensile testing is not feasible for such brittle materials because the

elongated sample required for such testing is difficult to fabricate and

test. It is also difficult to subject a char, in granular form, to

either compressive or tensile stresses. Jones (34) suggests that an

attempt be made to partly carbonize coals to form chars in a confined

space under a standard physical constraint. If semi-coke or char cylinders

can be produced, then they can be tested according to the Brazilian test;

a compression cage connected to a bench-mounted tensiometer and auxiliary

equipment can be used.

Particle-size distribution . To measure particle-size distribution

for a comparative evaluation, the treatment of the semi-cokes and chars

must be identical.

Porosity and pore wall characteristics . Optical microscopy can be

used to evaluate the porosity and the optical character of the pore walls

(i.e., anisotropy and thickness of granular and compacted semi-coke or

char) . Porosity may also be determined by mercury porosimetry and by the

use of a Beckman air comparison pycnometer, for measurement of small

volumes of pulverized semi-coke or char (34).

Comparison of Chemical Properties of Chars

Composition . Proximate, elemental and trace element analysis by

conventional methods may be carried out as for coal and coke on both

semi-coke and char and on standard reference materials, for the purpose

of comparison.

Reactivity . There is much to be learned from examination of the

carbon-carbon dioxide reaction, as little fundamental research has been

done to investigate the reaction kinetics at elevated temperatures. This

is an important reaction in the iron-making blast furnace, particularly

in the raceway areas in front of the tuyeres where the following reactions

occur

:
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c + 2 — CO 2

2COC + CO 2

2C + 2 ,,— 2CO

Coke arrives at the tuyeres at a temperature of about 1500°C and comes

into contact with air that is usually above 1000°C under conditions of

high turbulence. The coke burns to C0 2 within 100 mm of the nose of the

tuyere and because of the instability of C0 2 in excess carbon at a

temperature of about 2000°C reacts to give CO for about 2 m into the bosh,

The mechanisms of catalysis by elements commonly found in the blast

furnace, such as alkalis, should also be investigated. Reactivity of

carbonized material with hydrogen may also be useful for evaluating the

reaction kinetics. Reactivity testing requires equipment in which the

gas atmosphere can be controlled over a wide range of temperatures and in

which changes in weight of small samples of coal, char or coke (such as

a mass flow thermobalance) can be measured.

Su lfur distribution . The high sulfur content of Illinois coal is a

major problem for the utilization of both the raw coal and its carbonized

forms. Dr. H. V. Jones is currently monitoring the sulfur distribution

in char and coke made from such coal, using the analytical electron

microscopy (AEM) facilities at the Materials Research Laboratory ( MRL)

.

This project is based on the work carried out by Professor C. Wert and

Mr. K. C. Hsieh (42) in the Department of Metallurgy and Mining Engineer-

ing at the University of Illinois. A technique has been developed for

preparing samples for transmission electron microscopy; this technique

has enabled the identification of very small sulfide particles as pyrite

and pyrrhotite crystals in coal. Microparticles of clays have also been

found.

In order to examine the changes in these micro-constituents during

carbonization, we suggest that chars be produced over a wide range of

temperatures and evaluated using AEM. The technique of MBssbauer spectro-

scopy can also be used to indicate the state of iron in combination with

sulfur (that Is, In the iron sulfide particles). We recommend that the

chars be produced in a thermobalance, so that weight loss data and
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sulfur-bearing volatile matter may be recorded. Conventional wet analysis

of chars can also be carried out to complement the results.

We also recommend that in addition to this project— to add to the

fundamental knowledge of sulfur in Illinois coals—research be conducted

on the pyrite-to-pyrrhotite reaction by using thermogravimetric analysis

(i.e., in a thermobalance) to correlate the degree of reaction and

variables such as reaction rate and temperature with stoichiometry . This

research could also provide a source of "standard" compounds for the

purpose of comparison with inorganic sulfur compounds, as identified by

AEM, in coal, char, and coke.

Coal is generally considered to be composed of three maceral groups

and mineral matter. We suggest that the distribution of sulfur in those

four groups and the form in which sulfur is combined should be examined.

A correlation of sulfur compounds with maceral groups, combined with

geological information, might provide an explanation of how the small

crystallites of sulfides occurred in the coal in the first place.

Research should also be conducted on the organic sulfur in coal and

its carbonized forms, and on the ability of char and coke to absorb or

react with sulfur-bearing volatile matter; findings from such research

should indicate whether sulfur that is removed in a gaseous form from

the coal during carbonization is absorbed back into the char or coke when

it is allowed to remain in contact with the solid material.

Compatability of Char and Binder

Tar or pitch can be used as a binder, as in the F.M.C. process. We

suggest that the technique of Ruhr dilatometry be used to evaluate char

and binder compatability prior to mechanical forming. It may be possible

to use the dilation characteristics of char-binder blends in the same way

as those of coal blends. Such information could be obtained from reference

materials (those known to be good for use in industrial plants) and

compared with ISGS chars and various binder combinations. The character-

istics of binders can also be investigated by using standard bitumen

tests, such as softening point and penetration tests, and elemental

analysis, especially for sulfur and its forms.
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Testing of Green and Carbonized Briquets

Briquets can be produced in a laboratory briquetting press or at the

formed coke plant. Both carbonized or uncarbonized briquets (i.e.,

formed coke or green briquets) made from reference and ISGS chars can

then be compared on the basis of size, weight, porosity, and fracture

strength. The effect of briqueting variables such as briqueting pressure

may also be examined.

A PROGRAM PROPOSAL

The techniques used for the evaluation of coal are well-established,

at least for the well-known carboniferous coals such as those found in

the midwestern United States. However, procedures for the evaluation of

metallurgical coke require further development on both a laboratory and

industrial scale. There is a particular need to standardize the physical

strength determinations and the reactivity to carbon dioxide test. Never-

theless, we propose that the evaluation of chars be conducted by using

the techniques described in the previous section of this paper. Research

on (1) physical parameters, (2) chemical properties, (3) interactions

between char and binder, and (4) testing of briquets are important steps

toward advancing the technology of utilizing low-sulfur chars made from

high-sulfur Illinois coals for the manufacture of metallurgical grade

coke. Well-equipped facilities and experienced personnel are available

at Champaign-Urbana for such a research program.

Existing Facilities and Personnel

The Applied Research Laboratory (ARL) is one of three buildings of

the Illinois State Geological Survey which is located on the campus of

the University of Illinois. The ARL building was completed in 1941 to

provide facilities for semi-plant scale research on Illinois coal and

minerals. Within a few years after its completion the laboratory housed

a press and oven for making coal briquets, a pilot coking oven, and coal

preparation equipment. The large coking oven has been replaced by low-

temperature carbonization equipment for producing the types of chars that

can be chemically benef iciated , but a complete range of bench-scale coal

cleaning units remain. The laboratory has been remodeled extensively in
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the past two years with more than $350,000 of funds from the Capital

Development Board. The additions include new laboratories for ASTM tests

on coal and coke, for chemical beneficiation of coal, for mineral

processing research, and for dust-controlled grinding and sieving.

The Materials Research Laboratory (MRL) is an interdepartmental

unit of the College of Engineering of the University of Illinois. The

MRL is affiliated with various University departments such as Geology

and Metallurgical and Mining Engineering, and also with allied state

agencies on the campus such as the Illinois State Geological Survey.

The MRL, directed by Dr. P. Flynn, is supported primarily by the U.S.

Department of Energy, the National Science Foundation, and funds from the

University of Illinois. This major facility houses analytical electron

microscope equipment that would be used in the program described.

Programs in coal carbonization and in the benef iciation of fine coal

at the ARL are directed by Dr. Carl Kruse. As of September 1981 this

section includes five full-time ISGS staff members and visiting scientist

Dr. H. V. Jones, a half-time employee. These research personnel have

expertise in coal analyses and testing methods, chemical and physical

beneficiation of coal, carbonization of coal, coke making for metallurgi-

cal applications, and spectroscopic methods of examining coal and its

carbonization products.

Additional Equipment Needed

The following equipment or its equivalent will be needed at the ARL

for the proposed research.

Sample preparation Estimated Cost

Rotary sample divider (eg., Pascall type) $ 3,000

Micronizing mill (eg., McCrone type) 1,600

Drying oven with forced convection 1,800

High-precision automatic balance 5,000
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Dilatometry

Ruhr dilatometer and coal pencil die
and press

Linear temperature variable rate programmer
with Platinum/Platinum-Rhodium thermo-
couples (eg., Stanton Redcroft type)

Millivoltage plotter (eg. , Speedomax chart

recorder, 0-10 mv scale)

Reactivity

Mass flow thermobalance (eg.

Cahn type)

Stanton or

Digital pyrometer and potentiometer with
Platinum/Platinum-13% Rhodium thermocouples

Gas cylinders of carbon dioxide, carbon monoxide,
hydrogen and nitrogen with flow meters, valves
and gages for control of gas supply to the

thermobalance

pH meter

Strength tests

Tensile testing machine, vertical bench
mounted type

Compression cage for compressing char and coke
in the tensile testing machine

X-Y pen recorder for rapid stress-strain plots
of data from the tensile testing machine

Estimated Cost

$ 2,500

2,000

1,500

19,000

400

2,400

700

15,000

200

1,200

TOTAL $56,300

To carry out the proposed research program at Applied Research

Laboratory, two research assistants will be required, one to prepare

samples and conduct dilation tests, the other to set up and operate the

thermobalance. A laboratory assistant will also be needed to help

assemble and maintain the equipment and make laboratory items such as

seal rings for ends of a rotary tube furnace, or a sample stand for the

thermobalance. One or two additional assistants will be required to help
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with work at the Materials Research Laboratory such as ion milling coal

and char samples for use in the electron microscope.

This program would offer a good opportunity for postgraduate students

with a B.S. in metallurgy, chemistry or physics to work for a M.S. or

Ph.D. degree under appropriate supervision. Research projects could be

based on these proposals, and the employment of research assistants or

postgraduate students (depending on the economic situation) should ensure

a detailed research program.
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GLOSSARY

Acid leaching - Dissolving in acid.

Analytical electron microscopy - The use of an electron microscope in

conjunction with X-ray analysis and electron diffraction techniques
to identify elemental composition and crystal structures
respectively.

Anistropy - Properties of a substance varies with direction.

Blast furnace - Vertical tube furnace for iron-making.

Blast furnace skip - Bucket used to fill the blast furnace with coke and
iron ore.

Bosh - Region just above the tuyeres inside a blast furnace.

Calorific value - Number of heat units obtained by the complete
combustion of unit mass of a fuel.

Carbonization - Process of coke formation.

Catalysis - A substance which accelerates a chemical reaction.

Charring - Partial carbonization of any coal.

Coal - Carbonaceous sedimentary rock derived from vegetable debris.

Coke - Solid residue formed by heating certain coals in the absence of air.

Flux - Substance added to solid to increase its fusibility.

Hydrodesulfurization - Removal of sulfur by reaction with hydrogen.

Maceral - Microscopically recognizable individual organic constituents of

coal which have evolved from different organs and tissues of the
plants from which the coal was originally formed, by the process of

coalif ication. Macerals are anologous to minerals in inorganic rocks.

Mossbauer spectroscopy - A technique used to evaluate the iron content in
materials using X-rays.

Petrology - Study of the origin, condition, composition alteration and
decay of rocks.

Pyrolysis - Heating.

Pyrolitic swelling - Expansion due to heating.

Reaction kinetics - The study of mechanisms involved in controlling the
speed of a chemical reaction.

Stoichiometry - Ratio of elements in a compound.

Tuyeres - Air injectors in blast furnace (cause blast of air that burns
coke)

.

Vitrinite - One of the three maceral groups found in coal.
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